Intrauterine devices (IUDs) are a commonly used form of contraception worldwide. However, migration of the IUD from its normal position in the uterine fundus is a frequently encountered complication, varying from uterine expulsion to displacement into the endometrial canal to uterine perforation. Different sites of IUD translocation vary in terms of their clinical significance and subsequent management, and the urgency of communicating IUD migration to the clinician is likewise variable. Expulsion or intrauterine displacement of the IUD leads to decreased contraceptive efficacy and should be clearly communicated, since it warrants IUD replacement to prevent unplanned pregnancy. Embedment of the IUD into the myometrium can usually be managed in the outpatient clinical setting but occasionally requires hysteroscopic removal. Complete uterine perforation, in which the IUD is partially or completely within the peritoneal cavity, requires surgical management, and timely and direct communication with the clinician is essential in such cases. Careful evaluation for intraabdominal complications is also important, since they may warrant urgent or emergent surgical intervention. The radiologist plays an important role in the diagnosis of IUD migration and should be familiar with its appearance at multiple imaging modalities.
Introduction
Intrauterine devices (IUDs) are a commonly used, highly effective, and rapidly reversible form of contraception. Two types of IUDs are available in the United States: a copper-containing IUD (TCu 380A [Paraguard]; Barr Pharmaceuticals, Pomona, NY) and a levonorgestrel-releasing IUD (LNG 20 [Mirena]; Bayer Healthcare Pharmaceuticals, Wayne, NJ). In general, an IUD consists of a T-shaped polyethylene frame with a copper wire or a levonorgestrel-containing collar around the stem. A polyethylene monofilament string is attached to the base of the stem (1). The copper wire is radiopaque and hyperechoic at ultrasonography (US). The frame of the levonorgestrel-releasing IUD contains barium sulfate, which aids in visualization at radiography but not at US (2).

The contraceptive effects of IUDs are multifactorial. IUDs produce chronic inflammatory changes of the endometrium and fallopian tubes that have spermicidal effects, inhibit fertilization, and create an inhospitable environment for implantation. The levonorgestrel-releasing IUD also alters and partially inhibits ovulation (3,4). Overall, IUDs are 98%–99% effective in preventing pregnancy (5,6). The IUD can easily be removed when the individual desires to attempt pregnancy. The copper IUD works for up to 10 years, whereas the levonorgestrel-releasing IUD works for up to 5 years (7–9).

As with any medication or medical device, there are side effects and risks associated with intrauterine contraception. Most commonly, patients will experience pain and abnormal bleeding, most severely during the first few months after IUD insertion (10,11). In a patient with a long-standing IUD who presents with pain, evaluation for other causes (eg, pelvic inflammatory disease, ectopic pregnancy, IUD displacement) must be performed.

In this article, we discuss clinical and radiologic considerations in the evaluation of IUDs; commonly encountered complications, including expulsion, displacement, and uterine perforation; and IUDs and pregnancy.

Clinical and Radiologic Considerations
Various imaging modalities are used in the evaluation of IUDs. US is appropriate for initial evaluation; it is widely available and inexpensive and does not involve radiation. Furthermore, US can often provide answers to clinical questions related to the IUD. It easily helps determine whether an IUD is correctly positioned and can often help identify IUD-related complications. IUD displacement and myometrial perforation can be fully evaluated by performing US alone. Three-dimensional (3D) US is often helpful for further characterizing these findings, and its use is becoming standard practice in the routine evaluation of IUDs.

Abdominal radiography—more specifically, anteroposterior and lateral radiography—can be helpful in demonstrating an extrauterine IUD and is required for the diagnosis of IUD expulsion. Conventional radiography exposes the patient to only minimal radiation, and the radiopaque IUD is easily identified if it has not been expelled (Fig 1). Occasionally, computed tomography (CT) is used for the assessment of IUD positioning; more often, however, IUDs are incidentally visualized at CT studies that were ordered for different indications (12). CT is the best modality for the evaluation of complications associated with intraabdominal IUDs, such as visceral perforation, abscess formation, and bowel obstruction. However, CT does expose the patient to significantly more radiation. Magnetic resonance (MR) imaging is not typically used specifically for the evaluation of intrauterine contraception, but modern IUDs are safely imaged with both 1.5-T and 3.0-T magnets and appear as signal voids (13).

IUD insertion generally requires no imaging guidance. The IUD is inserted through the cervix using a sheath and is placed at the uterine fundus. Some circumstances may require US guidance; for example, if submucosal fibroids are present, US guidance ensures proper positioning within the endometrial cavity. In addition, if there is high resistance to insertion, US guidance helps prevent uterine perforation.

At gynecologic examination following insertion, the retrieval string should protrude ap-
proximately 2–3 cm through the external cervical os, with the entire IUD within the endometrial cavity. No portion of the device should be visible within the endocervical canal. The patient should be followed up within 6 weeks to ensure that the string is seen at pelvic examination, since a missing string is a common indication of displacement, uterine perforation, or expulsion (8,9).

At US, the stem of a properly placed IUD is straight and is entirely within the endometrial cavity, with the arms of the IUD extending laterally at the uterine fundus (Fig 2). At evaluation of fundal placement of the IUD, the distance from...
Figure 3. Normal appearance of an IUD and retrieval string. (a) Transvaginal longitudinal US image of the uterus demonstrates an appropriately placed IUD, with the string (arrow) exiting through the endocervical canal. (b) Coronal 3D US image through the uterus demonstrates the hyperechoic IUD (arrow) appropriately positioned in the echogenic endometrial canal. (c, d) Coronal 3D US images of the lower uterine segment and cervix obtained at slightly different obliquities demonstrate the string (arrow) exiting through the cervix.

The IUD string is not generally visible radiographically but can often be seen at US, particularly on 3D images (12). Three-dimensional US is also beneficial for determining if the IUD is entirely within the endometrial cavity (Fig 3) (16). Two-dimensional US is adequate for identifying the stem, but 3D US is often crucial for

the top of the uterine cavity to the IUD should be 3 mm or less (14). A distance greater than 4 mm is more often associated with symptoms such as bleeding and pain, as well as with a higher risk of expulsion or displacement (14,15).
determining the location of the arms of the IUD with respect to the uterine cavity (17). There are also differences in conspicuity between the copper-containing IUD and the levonorgestrel-releasing IUD. The echogenic stem and arms of the copper-containing IUD are seen in their entirety on sagittal and transverse views, respectively. In contrast, the levonorgestrel-releasing IUD usually manifests with acoustic shadowing between its echogenic proximal and distal ends, so that precise localization is hindered. Both types of IUDs are more conspicuous at 3D US than at two-dimensional US (Fig 4) (2).

Complications

Expulsion
Uterine expulsion of the IUD is a relatively common complication, occurring in up to 10% of patients (5). Insertion early in the menstrual cycle may increase the likelihood of expulsion (18). Other risk factors include nulliparity, menorrhagia, and immediate postpartum insertion (19–21). Patients with severe anatomic distortion of the uterine cavity (e.g., a bicornate uterus or large submucosal fibroids) may be at higher risk for IUD expulsion or difficulty with placement (22,23). The position of the uterus (antverted versus retroverted) does not affect expulsion rates (24). After IUD expulsion, patients
Detection of uterine expulsion should be clearly communicated in the radiology report. In a patient with partial expulsion of the IUD into the cervix, management generally consists of removal with alligator forceps or an IUD hook (25). The IUD should not be reinserted. When the IUD is not seen at US and expulsion is suspected, the fact that the IUD is not within the peritoneal cavity must be confirmed with abdominopelvic radiography (26).

Figure 5. Intrauterine pregnancy in a 36-year-old woman who presented to the emergency department with lower abdominal pain. (a) Transabdominal transverse US image through the vagina shows a malpositioned IUD (arrow) in the vaginal fornix. (b) Transabdominal longitudinal US image through the uterus reveals a gestational sac and yolk sac (arrowhead), findings that are consistent with an intrauterine pregnancy. (c) Transabdominal longitudinal US image through the cervix depicts expulsion of the IUD (arrows) through the cervix into the vaginal fornix. The intrauterine pregnancy is also visible.

Teaching Point

The contraceptive efficacy of IUDs is associated with appropriate intrauterine location (Fig 5). In particular, an IUD in a cervical location is associated with increased accidental pregnancy compared with a properly positioned IUD (25).
Displacement

Another commonly encountered problem with intrauterine contraception is displacement of the IUD within the uterine cavity. Such displacement occurs in up to 25% of females with an IUD (2,27). A displaced IUD is usually asymptomatic, although some affected patients present with cramping or bleeding (Fig 6).

No guidelines exist for management in asymptomatic patients with a displaced IUD. However, the greater the displacement of the IUD from its proper position in the uterine fundus, the less effective it is for contraception and the more likely it is to be expelled. It is important (although not urgent) to communicate the detection of a displaced IUD in the radiology report. The management of this situation varies among practitioners and often depends on the patient’s preferences. Removal of a displaced IUD without myometrial perforation is generally uncomplicated, being performed in the clinical setting with alligator forceps or an IUD hook. Rarely, hysteroscopic removal is necessary (28).

Occasionally, the patient desires to leave the displaced IUD in place.

Perforation

Uterine perforation is an uncommon but serious complication in females with an IUD, occurring in up to one of every 1,000 cases (29). Although there are not many documented risk factors, perforation occurs more frequently in patients who are lactating or who gave birth within the past 6 months. Perforation is thought to be related to low estrogen levels leading to uterine shrinkage. Uterine abnormalities and clinician inexperience also contribute to an increased likelihood of perforation (30,31).

IUD perforation is variable in extent and symptomatology, ranging from embedment in the myometrium to complete transuterine perforation with migration of the IUD into the peritoneal cavity (32). Some patients may be asymptomatic but...
occur to some degree in up to 18% of females with an IUD. Embedment is more common in females with smaller fundal endometrial diameters (17). US is the modality of choice for initial imaging in patients with suspected perforation. Three-dimensional US in particular has been shown to be helpful in identifying malpositioned and embedded IUDs in symptomatic patients (16). In the emergent setting, CT is commonly performed to

Figure 7. IUD embedment. (a) Transvaginal longitudinal US image through the cervix obtained in an asymptomatic 44-year-old woman with a missing IUD string at routine pelvic examination shows the stem of the IUD (arrow) positioned partially in the endocervical canal. The base of the stem (arrowhead) is embedded in the posterior cervix. (b) Transvaginal transverse US image through the cervix shows the arms of the IUD (arrows) protruding laterally into the myometrium of the midbody of the uterus. (c) Coronal 3D US image shows the arms of the IUD (arrows) extending laterally into the myometrium, with the base of the IUD stem (arrowhead) perforating the cervix.

present with a missing IUD string at pelvic examination, whereas others may present with severe abdominal pain or vaginal bleeding (30).

Embedment.—Embedment refers to IUD penetration into the endometrium or myometrium without extension through the serosa (Fig 7). It may occur to some degree in up to 18% of females with an IUD. Embedment is more common in females with smaller fundal endometrial diameters (17).
Figure 8. Malpositioned IUD in a 32-year-old woman who presented to the emergency department with lower abdominal pain. (a) Transvaginal transverse US image of the uterus shows the arms of the IUD (arrows) turned obliquely and perforating the myometrium in the uterine midbody. (b) Coronal 3D US image of the uterus more clearly depicts the arms of the IUD (arrows) extending into the myometrium. (c) Coronal reformatted CT image demonstrates the malpositioned IUD (white arrow) in the endometrial cavity (black arrow) with its arms perforating the myometrium.

Exclude other causes for the patient’s symptoms and to verify US findings (Fig 8). Generally, however, CT should not be the initial imaging study in patients with suspected IUD embedment.

Embedment of the IUD warrants direct communication of this finding to the clinician, as well as clear documentation in the radiology report. Management of this entity is variable but at the least consists of treatment with empirical antibiotics. Clinical removal of the IUD with alligator forceps or an IUD hook may be attempted. If there is resistance to removal or
Figures 9, 10.  (9) Complete uterine perforation in a 36-year-old woman with subacute abdominal pain and a missing IUD string. At clinical US, the IUD was visible within the endometrial cavity, but an attempt to remove it was unsuccessful. (a) Abdominopelvic radiograph demonstrates the IUD in the midpelvis. (b) CT scan through the pelvis demonstrates the stem of the IUD (arrow) within the uterus. (c) Coronal reformatted CT image through the pelvis demonstrates an arm of the IUD (arrow) perforating the serosa of the uterine fundus. No intraabdominal complications are appreciated. (10) Complete uterine perforation in a 31-year-old woman who presented to the emergency department with lower abdominal pain. (a) Transvaginal longitudinal US image demonstrates a malpositioned IUD (arrow) in the lower uterine segment and the cervix. (b, c) CT scans through the pelvis (c obtained at a slightly lower level than b) demonstrate an arm of the IUD (arrow) perforating through the posterior serosa of the uterus into the pouch of Douglas adjacent to the rectum. There is no bowel perforation.
If the IUD extends through the uterine serosa but is still partially contained in the uterus (Figs 9, 10), the most common complication is omental adhesion formation (32).

Intraabdominal migration of the IUD may lead to more serious complications. Most frequently, the IUD is freely floating in the abdomen or pelvis, encased in adhesions, or adherent to bowel or omentum (Figs 11, 12). Adhesion formation...
Figure 12. Intraabdominal IUD migration in a 33-year-old woman with abdominal cramping, vaginal spotting, and a missing IUD string. (a) Transabdominal longitudinal US image through the uterus demonstrates a hyperechoic linear structure (arrowhead) in the endometrial canal. The arms of the IUD are not visible. (b) Coronal 3D US image of the uterus more clearly demonstrates that the linear hyperechoic structure within the endometrial canal is discontinuous (arrows), a finding that is more compatible with endometrial calcifications. (c) Abdominopelvic radiograph shows the IUD in the left upper quadrant of the abdomen.

can lead to infertility, chronic pain, and intestinal obstruction. Rarely, an intraperitoneal IUD can perforate adjacent structures, leading to peritonitis, fistulas, or hemorrhage (34–36). Intraabdominal infection or abscess formation occurs in up to 16% of patients (37). As with partial perforation, symptomatology is variable, ranging from no symptoms to severe pain and bleeding.

Pelvic US should be the initial imaging study. In some patients, US is followed with abdominopelvic radiography. Conventional radiography is required for the diagnosis of expulsion but can also be helpful for determining whether there is complete uterine perforation. A definite diagnosis of complete perforation can be made at conventional radiography if the IUD is located above the pelvic brim, far lateral (on an anteroposterior view), or far anterior or posterior (on
a lateral view). Rotation of the IUD of 90° or 180° at conventional radiography is a less specific indication of complete perforation. Embedment is difficult to detect at conventional radiography, since there will not be dramatic movement of the IUD within the pelvis in such cases (26). CT helps gauge the severity of perforation and is also useful for evaluating for further complications in patients with complete perforation. Although adhesions cannot be seen at CT, sequelae of adhesions, bowel obstruction, IUD perforation into adjacent structures, and intraabdominal abscesses are visible. However, CT is not essential for making the diagnosis, and direct advancement to surgery is appropriate in some circumstances. MR imaging is not routinely used to evaluate an IUD but can be helpful in localizing the IUD and evaluating its relationship to the uterus.

Uterine perforation is thought to occur frequently at the time of insertion (12,30,38), and it should be suspected in patients with acute pain and a missing IUD string (Fig 13). However, the perforation may not be recognized immediately, and close follow-up of newly inserted IUDs is essential. Factors leading to periprocedural perforation are patient related (size, configuration, and undetected anomalies of the uterus) or due to practitioner inexperience (38). At the time of insertion, the IUD itself or the insertion tube may be pushed through the myometrium (30).

Prior cesarean section does not increase the risk of uterine perforation by an IUD. In fact, IUD insertion through the incision site immediately following cesarean delivery has been shown to have significantly fewer complications than postpartum vaginal insertion (39). Uterine perforation following cesarean section is rare, although some cases have been reported (Fig 14) (40).

Management of uterine perforation by an IUD is controversial. Although it is agreed that all patients with perforation should receive empirical antibiotics, some data suggest that surgical treatment should be reserved for symptomatic patients (38). However, surgical removal of an intraabdominal IUD is recommended by the World Health Organization and is generally accepted as necessary.
IUDs and Pregnancy

IUDs provide highly effective contraception. However, pregnancy does occur in approximately two of every 100 females per year of IUD utilization. Pregnancy most commonly occurs in the first year of IUD use (43). An IUD in situ is associated with multiple adverse outcomes during pregnancy, including neonatal complications (eg, low birth weight) and late gestational risks (eg, premature labor, chorioamnionitis, and spontaneous abortion). There is a 40%–50% spontaneous abortion rate in females with an IUD, which is twice the rate in the general female population (Fig 15). These risks are reduced with removal of the IUD early in pregnancy (44,45).
Management in patients with an IUD and a synchronous intrauterine pregnancy depends on gestational age and IUD location. During the first trimester, removal of the IUD under US guidance using an IUD hook or alligator forceps is recommended. However, if the location makes removal difficult or will disrupt the pregnancy, the risks of IUD removal outweigh the benefits (46). Removal during the second trimester is riskier, potentially leading to rupture of membranes, bleeding, or fetal loss. US localization is critical, and removal is again based on location and lack of incorporation into the placenta or gestational sac. Beyond the late second trimester, the risks of removal outweigh the benefits.

Another risk in females with an IUD is ectopic pregnancy, although the risk in females not using contraception is 10 times higher than in those using contraception (21,47). However, ectopic pregnancy is more common in females with an IUD than in those using other forms of contraception (48). When pregnancy occurs with an IUD in place, implantation is unlikely to occur in the endometrial cavity. Therefore, patients with an IUD and positive pregnancy test results should be assumed to have an ectopic pregnancy until proved otherwise (12).

From a radiologic perspective, it is important to understand the risks and complications of pregnancy in females with an IUD. The difficulty and risk of removal increase as the pregnancy progresses, so that early identification and acknowledgment of an intrauterine pregnancy and IUD by the radiologist result in a better prognosis. Patients with an IUD and worrisome symptoms of ectopic pregnancy should be more carefully evaluated for this entity. Obviously, a diagnosis of ectopic pregnancy, which can lead to life-threatening complications, warrants direct communication of the diagnosis to the clinician.
Conclusions

IUDs are a widely used method of contraception with inherent risks that the radiologist should understand both radiologically and clinically. Multiple imaging modalities can be used to evaluate an IUD, but US is appropriate for initial evaluation. Conventional radiography of the abdomen is used to assess the location of an IUD when it is not clearly visualized at US. CT is the most useful modality for identifying complications of an intraabdominal IUD (Fig 16).

The radiologist should make sure to communicate any findings of IUD malpositioning to the clinician. Detection of expulsion or displacement should be immediately communicated to the patient and her healthcare provider, since they can lead to decreased contraceptive efficacy and may require further management. Embedment of an IUD in the myometrium may necessitate intervention in the outpatient clinical setting and warrants communication of this finding to the referring clinician, as well as clear documentation in the radiology report. Timely and direct communication with the clinician is most urgent for those patients with complete uterine perforation and partial or complete protrusion of the IUD into the peritoneal cavity. Patients with an uncomplicated perforation will likely undergo laparoscopic removal of the IUD. Early surgical intervention appears to decrease the likelihood of adhesion formation, thereby making laparoscopic removal easier. Emergent surgical intervention should be guided by the patient’s clinical presentation, supplemented by findings at cross-sectional imaging performed to detect serious intraabdominal complications.

It is also important to understand the complications associated with pregnancy in females with an IUD. Such pregnancies are associated with multiple adverse outcomes for the mother and fetus. Understanding these complications will allow a more thorough assessment of the study and may provide impetus for expedited clinical communication of pertinent findings.
Acknowledgments.—The authors wish to especially thank Gail C. Hansen, MD, at Olive View–UCLA Medical Center for image contribution, and David Nelson at the UCLA Radiological Media Department for image assistance.

Disclosures of Potential Conflicts of Interest.—D.J.A.M.: Related financial activities: none. Other financial activities: consultant and reader for MedQIA, grant from Siemens, consulting fees through the University of California.

References
17. Shipp TD, Bromley B, Benacerraf BR. The width of the uterine cavity is narrower in patients with an embedded intrauterine device (IUD) compared to a normally positioned IUD. J Ultrasound Med 2010;29(10):1453–1456.


This journal-based CME activity has been approved for AMA PRA Category 1 Credit™. See www.rsna.org/education/rg_cme.html.
At US, the stem of a properly placed IUD is straight and is entirely within the endometrial cavity, with the arms of the IUD extending laterally at the uterine fundus (Fig 2).

The contraceptive efficacy of IUDs is associated with appropriate intrauterine location (Fig 5).

If the IUD extends through the uterine serosa but is still partially contained in the uterus (Figs 9, 10), the most common complication is omental adhesion formation (32).

An IUD in situ is associated with multiple adverse outcomes during pregnancy.

However, ectopic pregnancy is more common in females with an IUD than in those using other forms of contraception (48).